Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide.
نویسندگان
چکیده
Modulating angiogenesis is an attractive goal because many pathological conditions depend on the growth of new vessels. Angiogenesis is mainly regulated by the VEGF, a mitogen specific for endothelial cells. In the last years, many efforts have been pursued to modulate the angiogenic response targeting VEGF and its receptors. Based on the x-ray structure of VEGF bound to the receptor, we designed a peptide, QK, reproducing a region of the VEGF binding interface: the helix region 17-25. NMR conformation analysis of QK revealed that it adopts a helical conformation in water, whereas the peptide corresponding to the alpha-helix region of VEGF, VEGF15, is unstructured. Biological assays in vitro and on bovine aorta endothelial cells suggested that QK binds to the VEGF receptors and competes with VEGF. VEGF15 did not bind to the receptors indicating that the helical structure is necessary for the biological activity. Furthermore, QK induced endothelial cells proliferation, activated cell signaling dependent on VEGF, and increased the VEGF biological response. QK promoted capillary formation and organization in an in vitro assay on matrigel. These results suggested that the helix region 17-25 of VEGF is involved in VEGF receptor activation. The peptide designed to resemble this region shares numerous biological properties of VEGF, thus suggesting that this region is of potential interest for biomedical applications, and molecules mimicking it could be attractive for therapeutic and diagnostic applications.
منابع مشابه
The promotion of microvasculature formation in poly(ethylene glycol) diacrylate hydrogels by an immobilized VEGF-mimetic peptide.
Microvascularization of tissue engineered constructs was achieved by utilizing a VEGF-mimicking peptide, QK, covalently bound to a poly(ethylene glycol) hydrogel matrix. The 15-amino acid peptide, developed by D'Andrea et al., was modified with a PEG-succinimidyl ester linker on the N-terminus of the peptide, then photocrosslinked onto the surface or throughout PEG hydrogels. PEGylation of the ...
متن کاملMiR-103 regulates the angiogenesis of ischemic stroke rats by targeting vascular endothelial growth factor (VEGF)
Objective(s): To investigate the effect of miR-103 on the angiogenesis of ischemic stroke rats via targeting vascular endothelial growth factor (VEGF) at the molecular level. Materials and Methods: Rat models had received the middle cerebral artery occlusion (MCAO) or sham operation before grouping, and cell models of oxygen-glucose deprivation (OGD) were performed. FITC-dextran, matrigel, and ...
متن کاملAutocrine and Paracrine Mechanisms Dependent Breast Tumor Growth and Angiogenesis via − Osteopontin Promotes Vascular Endothelial Growth Factor
Angiogenesis is the hallmark of cancer, and development of aggressiveness of primary tumor depends on de novo angiogenesis. Here, using multiple in vitro and in vivo models, we report that osteopontin (OPN) triggers vascular endothelial growth factor (VEGF)–dependent tumor progression and angiogenesis by activating breast tumor kinase (Brk)/nuclear factor–inducing kinase/nuclear factor-KB (NF-K...
متن کاملPathway Analysis of miRNA-1 and Its Expres-sion Evaluation in Donor’s Serum from HIV-Positive Individuals vs Unaffected Controls
Background MicroRNAs (miRNAs) are non-coding RNA molecules (19-24 nucleotides) that play a major role in a wide range of biological processes through post-transcriptional regulation of gene expression. Differential expression of miRNAs has been reported in various infectious diseases such as HIV infection. The characterization of miRNA expression profiles, especially in mammalian biofluids, whi...
متن کاملThe effect of a VEGFB antagonist peptide on the expression level of miR-210 in a mouse model of breast cancer
Breast cancer is the fourth common cancer worldwide and occurs when breast cells begin to uncontrolled division and tumor formation. Angiogenesis is one of the essential factors in cell growth and maintenance of homeostasis in the natural and pathological conditions, while VEGFs are the most critical factors in angiogenesis. MiR-210 plays an important role in the angiogenesis via association wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 40 شماره
صفحات -
تاریخ انتشار 2005